مجلة الكوت للعلوم االقتصادية واالدارية تصدرعن كلية اإلدارة واالقتصاد/جامعة واسط العدد) 23 ( 2016

Size: px
Start display at page:

Download "مجلة الكوت للعلوم االقتصادية واالدارية تصدرعن كلية اإلدارة واالقتصاد/جامعة واسط العدد) 23 ( 2016"

Transcription

1 اخلالصة المعادالث التفاضليت العشىائيت هي حقل مهمت في مجال االحتماالث وتطبيقاتها في السىىاث االخيزة, لذلك قام الباحث بذراست المعادالث التفاضليت العشىائيت المساق بعمليت Levy بذال مه عمليت Brownian باستخذام المحاكاة مه خالل اوىاع مه عمليت Levy لبيان تأثيزها احصائيا مه خالل بعض المقاييس االحصائيت وكذلك مسار المعادلت التفاضليت العشىائيت. الللمات االفتتاحية دراسة احملاكاة للمعادالت التفاضلية العشوائية املشاق بعملية Levy A Simulation Study on Stochastic Differential Equation Driven by Levy Process م.د.مهند فائز الشعدون قشم االحصاء /كلية االدارة واالقتصاد /جامعة القادسية عمليتLevy,معادالث تفاضليت عشىائيت, عمليت تبايه كاما, عمليت Normal-Inverse Gaussian,عمليتLevy Hyperbolic Abstract A Stochastic Differential Equation (SDE) is an important field in both Probability theory and its application in recent years. We will study the Stochastic Differential Equation (SDE) driven by Levy Processes using different types of this process. Levy processes implement in SDE instead of Brownian motion, which is a special case of it. The aim of this article is to show different types of Levy processes and affect on the path of SDE using some descriptive statistics and the graph of path for SDE in simulation framework. Keywords: Levy process, Stochastic Differential Equation, Variance-Gamma Process, Normal-Inverse Gaussian Process, Hyperbolic Levy Process. 1 Introduction Levy process is introduced by Paul Levy 1950 [1, 10 and 11]. Our motivate is to study the path of Stochastic Differential Equation (SDE) driven by Levy Process using (Compound Poisson, Variance Gamma, Normal Inverse Gaussian and Hyperbolic) Process, instead of Brownian motion to show some graphics and descriptive statistics tools. The key of Levy process is to deal as a small or a big jump on continuous time stochastic processes. The aim of this article is to study some types of Levy Processes and affect on the path of in SDE. In literature review, S.M.Iacus [8], [9] and F.C. Klebaner [11] show the simulation of Stochastic Differential Equations in discrete time and explain the most popular processes of these equations such as Ornstein-Uhlenbeck, Geometric Brownian and Vasicek Interest Rate Processes and some algorithms for them with application in financial aspect. Omer, Onalan [15] presents the Ornstein- Uhlenbeck driven by Levy Processes. The application of Levy

2 Process is in Finance, storage issue and Insurance as shown in [12] whom present some Monte Carlo methods for this process. In pure probability, [11] presents Stochastic Calculus to deal with Stochastic Differential Equation driven by Levy processes. Finally, the statistical methods for Stochastic Differential Equation will be presented by [10]. The paper is organized as follows: Section 2 we replace Brownian motion by Levy processes in Ornstein-Uhlenbeck (OU) and Geometric Brownian (GB) Processes as example of SDEs. In Section 3 shows some definitions, properties and types of Levy Processes. In Section 4 we apply these SDEs are driven by Levy Processes using simulation study. Finally, In Section 5 we include some conclusions. 2 Stochastic Differential Equation driven by Levy Process The compounded of stochastic Differential Equation is a deterministic term and a noise term that represents a stochastic Process. The general form of SDE is [7]: dxt = μdt + ζdwt, (1) where Xt is a stochastic process in time t; μ is a drift parameter; ζ is a volatility parameter; Wt is a Brownian motion. In this article, we will replace Brownian motion by Levy Process. Then, we will rewrite equation (1) as follows [2, 3, 4 and 14]: where Lt is a Levy Process in time t. dxt = μdt + ζdlt, (2) We will present two examples of SDE. These examples are Ornstein- Uhlenbeck (OU) and Geometric Brownian (GB) processes. Now we will study them as follows: 2.1 Ornstein-Uhlenbeck (OU) Process It is introduced by Leonard Ornstein and George Eugene Uhlenbeck (1930) [2] which is a popular process in financial mathematics. It can be written as SDE as follows [17]: dxt = (θ1 θ2xt)dt + θ3dlt, (3) where Xt is a stochastic process in time t. θ1, θ2 and θ3 are parameters. Using Itoˆ Lemma [3], the solution of this process is as:

3 X0 is an initial value of Xt. We will use this process in discrete time as shown in [6] and [15]. 2.2 Geometric Brownian (GB) Process It is introduced by Samulson (1965) [9]. This process deals with exponential formula for Brownian motion. It can be written as SDE: This formula is a popular process in financial mathematics in particular, stock price in European option [12]. Using Ito lemma [15] to solve equation (5), we can write it as follows: As we mentioned above, we will this process in discrete time as shown in [6] using Euler scheme. Now, we will present Levy process and implement in our processes. 3 Levy Processes The main idea of Levy processes is to work with a jump in continuous time stochastic process. The simplest example of Levy process is a compound Poisson process. In general, a Levy process is the natural generalization of both case Brownian motion and the Poisson process [12]. Let us start with some definitions and properties of Levy processes as shown in many books [1], [9] and [12]: Definition 3.1 A Levy Process L is a stochastic process that define on probability space (ω, F, P), if we have L is a Levy process then the properties L are: 1- The path of L are almost surely right continuous with left limits; 2- L has stationary increments, i.e., Lt Ls is equal in distribution to Lt s; 3- The increments are independent of the past: Lt Ls is independent of ζ(lu : u s) where 0 s t.

4 In pure probability, there are some definitions of Levy processes as follows: Definition 3.2 Levy filtration is letting L be a Levy process, then L x fulfills the used conditions of completeness and right continuity. Definition 3.3 Levy measure: if L is a Levy process that define a set v on R by setting for every Borel set Γ which does not contain zero. and v(0) = 0. hen v is a positive measure, called the Le vy measure. hen it has the properties: 1- v(γ) < is a Borel set, and bounded away from zero; 2- where v(γ) is the expected number of jumps per unit time whose sizes fall in the set Γ, shown in [4 and 16]. Definition 3.4 Levy- Khintchine formula: Let L be a Le vy process. hen, there exists a triple (γ, ζ 2, v) such that the cumulate function can be written for Z D as where γ and ζ 2 are constant, and v is the Le vy measure L(γ, ζ 2, v) is called the generating triple of the Le vy process L. either ζ 2 nor v depend on the choice of truncation function h, but γ does. Now, We will explain some popular types of Le vy rocesses as follows

5 3.1 Compound Poisson Process If Lt is a continuous time stochastic process which has a compound poisson process, then: Where Lt is a compound poisson process, N (t) is a poisson distribution with intensity parameter λ and zi is a probability density which is independent of N (t). The continuous time of Lt is distributed as exponential process. We will rewrite Equations (4) and (6) as follows: and, is very to compute the mean, variance, skewness and kurtosis from Equations (7) and (8). It easy 3.2 The Variance Gamma Process A Variance Gamma process (VG) is a stochastic process that is also defined as Laplace motion [12]. It considers as a pure jump in probability theory. The process L(t; ζ, v, θ) is a Variance Gamma with parameters ζ, v and θ. Therefore, we can rewrite Equation (4) and (6) as follows: And where, Lt is VG process, μ is the drift parameter and ζ is the volatility

6 parameter. To compute the mean, variance, skewness and kurtosis of these processes we can use Equations (9) and (10). 3.3 Normal Inverse Gaussian Process N I (t) is stochastic process that has Normal Inverse Gaussian NIG. The density function of NIG can be written as: where α, β and δ are the parameters of IG process, and k1 is the modified Bessel function third kind [5]. Our Equations (3) and (6) will be written as follows: and where E(exp(ζ I(t))) represents the martingale measure [10] and [13]. We can compute the mean, variance, skewness and kurtosis using Equations (11) and (12). 3.4 The Hyperbolic Levy Process Now, the Levy process represents as Hyperbolic distribution [12]. Then, the density function of Hyperbolic, when t = 1, is: where ε and δ are real constants and k1(ε) is the modified Bessel function of the third kind and the formula is [9] :

7 Therefore, we can rewrite Equation (4) and (6) as follows: To compute the mean, variance, skewness and kurtosis, we can use Equations (13) and (14). 4 Simulation Study We use the simulation study to show our processes that are driven by Levy Process such as Compound Poisson, Variance Gamma, Normal Inverse Gaussian and Hyperbolic Process. We use R language, which is free software, dealing with our processes. We set up some parameters for our processes. The number observation of simulation study is = he parameters of OU rocess are θ1 = 0,θ2 = 5 and θ3 = 3.5. he parameters of GB rocess are μ = 0.3 and ζ = 0.7. he parameter of Compound oisson rocess is λ = 2. he parameters of Variance Gamma process are ε = 2 and δ = 2. he parameters of ormal Inverse Gaussian are α = 1, β = 0.5 and δ = 1. he parameters of Hyperbolic rocess are ε = 1 and δ = 0.5. We will present the results of our processes are follows 4.1 Compound Poisson Process Table 1 shows some important descriptive statistics, i.e., (Minimum and Maximum) values, 1 st and 3 rd quartile, Median, Mean, Skewness, Kurtosis and Number of Jump in our processes. Interestingly, the skewness, we have known, is the measure of symmetry. In Table 1 we can say that our processes are approximately symmetry and left side. Kurtosis, as we have known, is measure of data that is the heavy or light tail. In Table 1 we can say that our processes are heavy-tail distribution. Figure 1 represents the path of OU and GB Process driven by Compound Poisson Process using Equations (7) and (8), respectively.

8

9 4.2 Variance Gamma Process Table 2 shows some important descriptive statistics, i.e., (Minimum and Maximum) values, 1 st and 3 rd quartile, Median, Mean, Skewness, Kurtosis and Number of Jump in our processes. The value of skewness in Table 2 are approximately symmetry and right side in our processes. The value of Kurtosis in Table 2 is the heavy-tail distribution. Figure 2 represents the path of OU and GB Process driven by Variance Gamma Process using Equations (9) and (10), respectively.

10 4.3 Normal Inverse Gaussian Process Table 3 shows some important descriptive statistics, i.e., (Minimum and Maximum) values, 1 st and 3 rd quartile, Median, Mean, Skewness, Kurtosis and Number of Jump in our processes. The value of skewness in Table 3 are clearly not symmetry with left side for OU Process and approximately symmetry for GB Process with left side as well. The value of Kurtosis in Table 3 is the heavytail distribution. Figure 3 represents the path of OU and GB Process driven by Normal Inverse Gaussian Process using Equations (11) and (12), respectively.

11 4.4 Hyperbolic Process Table 4 shows some important descriptive statistics, i.e., (Minimum and Maximum) values, 1 st and 3 rd quartile, Median, Mean, Skewness, Kurtosis and Number of Jump in our processes. The value of skewness in Table 4 are approximately symmetry with left side for our processes. The value of Kurtosis in Table 4 is the heavy-tail distribution. Figure 4 represents the path of OU and GB Process driven Hyperbolic Process using Equations (13) and (14), respectively.

12 5 Conclusion We have presented some popular SDEs such as Ornstein-Ulhecbeck and Geometric Brownian equation driven by Levy Process. We have used Compound Poisson, Variance Gamma, Normal Inverse Gaussian and Hyperbolic to present the Levy Process. In general, our processes are almost surely symmetry and heavy tail distribution.

13 References

14

Ornstein-Uhlenbeck Theory

Ornstein-Uhlenbeck Theory Beatrice Byukusenge Department of Technomathematics Lappeenranta University of technology January 31, 2012 Definition of a stochastic process Let (Ω,F,P) be a probability space. A stochastic process is

More information

Monte Carlo Simulation of Stochastic Processes

Monte Carlo Simulation of Stochastic Processes Monte Carlo Simulation of Stochastic Processes Last update: January 10th, 2004. In this section is presented the steps to perform the simulation of the main stochastic processes used in real options applications,

More information

Continous time models and realized variance: Simulations

Continous time models and realized variance: Simulations Continous time models and realized variance: Simulations Asger Lunde Professor Department of Economics and Business Aarhus University September 26, 2016 Continuous-time Stochastic Process: SDEs Building

More information

Optimal Option Pricing via Esscher Transforms with the Meixner Process

Optimal Option Pricing via Esscher Transforms with the Meixner Process Communications in Mathematical Finance, vol. 2, no. 2, 2013, 1-21 ISSN: 2241-1968 (print), 2241 195X (online) Scienpress Ltd, 2013 Optimal Option Pricing via Esscher Transforms with the Meixner Process

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

Financial Engineering. Craig Pirrong Spring, 2006

Financial Engineering. Craig Pirrong Spring, 2006 Financial Engineering Craig Pirrong Spring, 2006 March 8, 2006 1 Levy Processes Geometric Brownian Motion is very tractible, and captures some salient features of speculative price dynamics, but it is

More information

Normal Inverse Gaussian (NIG) Process

Normal Inverse Gaussian (NIG) Process With Applications in Mathematical Finance The Mathematical and Computational Finance Laboratory - Lunch at the Lab March 26, 2009 1 Limitations of Gaussian Driven Processes Background and Definition IG

More information

Conditional Density Method in the Computation of the Delta with Application to Power Market

Conditional Density Method in the Computation of the Delta with Application to Power Market Conditional Density Method in the Computation of the Delta with Application to Power Market Asma Khedher Centre of Mathematics for Applications Department of Mathematics University of Oslo A joint work

More information

On modelling of electricity spot price

On modelling of electricity spot price , Rüdiger Kiesel and Fred Espen Benth Institute of Energy Trading and Financial Services University of Duisburg-Essen Centre of Mathematics for Applications, University of Oslo 25. August 2010 Introduction

More information

Monte Carlo Methods in Financial Engineering

Monte Carlo Methods in Financial Engineering Paul Glassennan Monte Carlo Methods in Financial Engineering With 99 Figures

More information

Financial Models with Levy Processes and Volatility Clustering

Financial Models with Levy Processes and Volatility Clustering Financial Models with Levy Processes and Volatility Clustering SVETLOZAR T. RACHEV # YOUNG SHIN ICIM MICHELE LEONARDO BIANCHI* FRANK J. FABOZZI WILEY John Wiley & Sons, Inc. Contents Preface About the

More information

Mgr. Jakub Petrásek 1. May 4, 2009

Mgr. Jakub Petrásek 1. May 4, 2009 Dissertation Report - First Steps Petrásek 1 2 1 Department of Probability and Mathematical Statistics, Charles University email:petrasek@karlin.mff.cuni.cz 2 RSJ Invest a.s., Department of Probability

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

BROWNIAN MOTION Antonella Basso, Martina Nardon

BROWNIAN MOTION Antonella Basso, Martina Nardon BROWNIAN MOTION Antonella Basso, Martina Nardon basso@unive.it, mnardon@unive.it Department of Applied Mathematics University Ca Foscari Venice Brownian motion p. 1 Brownian motion Brownian motion plays

More information

1 The continuous time limit

1 The continuous time limit Derivative Securities, Courant Institute, Fall 2008 http://www.math.nyu.edu/faculty/goodman/teaching/derivsec08/index.html Jonathan Goodman and Keith Lewis Supplementary notes and comments, Section 3 1

More information

Time-changed Brownian motion and option pricing

Time-changed Brownian motion and option pricing Time-changed Brownian motion and option pricing Peter Hieber Chair of Mathematical Finance, TU Munich 6th AMaMeF Warsaw, June 13th 2013 Partially joint with Marcos Escobar (RU Toronto), Matthias Scherer

More information

Introduction to Stochastic Calculus With Applications

Introduction to Stochastic Calculus With Applications Introduction to Stochastic Calculus With Applications Fima C Klebaner University of Melbourne \ Imperial College Press Contents Preliminaries From Calculus 1 1.1 Continuous and Differentiable Functions.

More information

Lecture 1: Lévy processes

Lecture 1: Lévy processes Lecture 1: Lévy processes A. E. Kyprianou Department of Mathematical Sciences, University of Bath 1/ 22 Lévy processes 2/ 22 Lévy processes A process X = {X t : t 0} defined on a probability space (Ω,

More information

Applications of Lévy processes

Applications of Lévy processes Applications of Lévy processes Graduate lecture 29 January 2004 Matthias Winkel Departmental lecturer (Institute of Actuaries and Aon lecturer in Statistics) 6. Poisson point processes in fluctuation theory

More information

Pricing of some exotic options with N IG-Lévy input

Pricing of some exotic options with N IG-Lévy input Pricing of some exotic options with N IG-Lévy input Sebastian Rasmus, Søren Asmussen 2 and Magnus Wiktorsson Center for Mathematical Sciences, University of Lund, Box 8, 22 00 Lund, Sweden {rasmus,magnusw}@maths.lth.se

More information

Stochastic Modelling Unit 3: Brownian Motion and Diffusions

Stochastic Modelling Unit 3: Brownian Motion and Diffusions Stochastic Modelling Unit 3: Brownian Motion and Diffusions Russell Gerrard and Douglas Wright Cass Business School, City University, London June 2004 Contents of Unit 3 1 Introduction 2 Brownian Motion

More information

Logarithmic derivatives of densities for jump processes

Logarithmic derivatives of densities for jump processes Logarithmic derivatives of densities for jump processes Atsushi AKEUCHI Osaka City University (JAPAN) June 3, 29 City University of Hong Kong Workshop on Stochastic Analysis and Finance (June 29 - July

More information

Math 416/516: Stochastic Simulation

Math 416/516: Stochastic Simulation Math 416/516: Stochastic Simulation Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 13 Haijun Li Math 416/516: Stochastic Simulation Week 13 1 / 28 Outline 1 Simulation

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

Economics has never been a science - and it is even less now than a few years ago. Paul Samuelson. Funeral by funeral, theory advances Paul Samuelson

Economics has never been a science - and it is even less now than a few years ago. Paul Samuelson. Funeral by funeral, theory advances Paul Samuelson Economics has never been a science - and it is even less now than a few years ago. Paul Samuelson Funeral by funeral, theory advances Paul Samuelson Economics is extremely useful as a form of employment

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

Handbook of Financial Risk Management

Handbook of Financial Risk Management Handbook of Financial Risk Management Simulations and Case Studies N.H. Chan H.Y. Wong The Chinese University of Hong Kong WILEY Contents Preface xi 1 An Introduction to Excel VBA 1 1.1 How to Start Excel

More information

Pricing Dynamic Guaranteed Funds Under a Double Exponential. Jump Diffusion Process. Chuang-Chang Chang, Ya-Hui Lien and Min-Hung Tsay

Pricing Dynamic Guaranteed Funds Under a Double Exponential. Jump Diffusion Process. Chuang-Chang Chang, Ya-Hui Lien and Min-Hung Tsay Pricing Dynamic Guaranteed Funds Under a Double Exponential Jump Diffusion Process Chuang-Chang Chang, Ya-Hui Lien and Min-Hung Tsay ABSTRACT This paper complements the extant literature to evaluate the

More information

Weierstrass Institute for Applied Analysis and Stochastics Maximum likelihood estimation for jump diffusions

Weierstrass Institute for Applied Analysis and Stochastics Maximum likelihood estimation for jump diffusions Weierstrass Institute for Applied Analysis and Stochastics Maximum likelihood estimation for jump diffusions Hilmar Mai Mohrenstrasse 39 1117 Berlin Germany Tel. +49 3 2372 www.wias-berlin.de Haindorf

More information

1 Rare event simulation and importance sampling

1 Rare event simulation and importance sampling Copyright c 2007 by Karl Sigman 1 Rare event simulation and importance sampling Suppose we wish to use Monte Carlo simulation to estimate a probability p = P (A) when the event A is rare (e.g., when p

More information

Numerical Simulation of Stochastic Differential Equations: Lecture 1, Part 2. Integration For deterministic h : R R,

Numerical Simulation of Stochastic Differential Equations: Lecture 1, Part 2. Integration For deterministic h : R R, Numerical Simulation of Stochastic Differential Equations: Lecture, Part Des Higham Department of Mathematics University of Strathclyde Lecture, part : SDEs Ito stochastic integrals Ito SDEs Examples of

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION

THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION SILAS A. IHEDIOHA 1, BRIGHT O. OSU 2 1 Department of Mathematics, Plateau State University, Bokkos, P. M. B. 2012, Jos,

More information

Pricing Dynamic Solvency Insurance and Investment Fund Protection

Pricing Dynamic Solvency Insurance and Investment Fund Protection Pricing Dynamic Solvency Insurance and Investment Fund Protection Hans U. Gerber and Gérard Pafumi Switzerland Abstract In the first part of the paper the surplus of a company is modelled by a Wiener process.

More information

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Indifference pricing and the minimal entropy martingale measure Fred Espen Benth Centre of Mathematics for Applications

More information

STOCHASTIC MODELLING OF ELECTRICITY AND RELATED MARKETS

STOCHASTIC MODELLING OF ELECTRICITY AND RELATED MARKETS Advanced Series on Statistical Science & Applied Probability Vol. I I STOCHASTIC MODELLING OF ELECTRICITY AND RELATED MARKETS Fred Espen Benth JGrate Saltyte Benth University of Oslo, Norway Steen Koekebakker

More information

An Analytical Approximation for Pricing VWAP Options

An Analytical Approximation for Pricing VWAP Options .... An Analytical Approximation for Pricing VWAP Options Hideharu Funahashi and Masaaki Kijima Graduate School of Social Sciences, Tokyo Metropolitan University September 4, 215 Kijima (TMU Pricing of

More information

Near-expiration behavior of implied volatility for exponential Lévy models

Near-expiration behavior of implied volatility for exponential Lévy models Near-expiration behavior of implied volatility for exponential Lévy models José E. Figueroa-López 1 1 Department of Statistics Purdue University Financial Mathematics Seminar The Stevanovich Center for

More information

Parameters Estimation in Stochastic Process Model

Parameters Estimation in Stochastic Process Model Parameters Estimation in Stochastic Process Model A Quasi-Likelihood Approach Ziliang Li University of Maryland, College Park GEE RIT, Spring 28 Outline 1 Model Review The Big Model in Mind: Signal + Noise

More information

Two and Three factor models for Spread Options Pricing

Two and Three factor models for Spread Options Pricing Two and Three factor models for Spread Options Pricing COMMIDITIES 2007, Birkbeck College, University of London January 17-19, 2007 Sebastian Jaimungal, Associate Director, Mathematical Finance Program,

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

Lévy Processes. Antonis Papapantoleon. TU Berlin. Computational Methods in Finance MSc course, NTUA, Winter semester 2011/2012

Lévy Processes. Antonis Papapantoleon. TU Berlin. Computational Methods in Finance MSc course, NTUA, Winter semester 2011/2012 Lévy Processes Antonis Papapantoleon TU Berlin Computational Methods in Finance MSc course, NTUA, Winter semester 2011/2012 Antonis Papapantoleon (TU Berlin) Lévy processes 1 / 41 Overview of the course

More information

Lecture 8: The Black-Scholes theory

Lecture 8: The Black-Scholes theory Lecture 8: The Black-Scholes theory Dr. Roman V Belavkin MSO4112 Contents 1 Geometric Brownian motion 1 2 The Black-Scholes pricing 2 3 The Black-Scholes equation 3 References 5 1 Geometric Brownian motion

More information

MFE/3F Questions Answer Key

MFE/3F Questions Answer Key MFE/3F Questions Download free full solutions from www.actuarialbrew.com, or purchase a hard copy from www.actexmadriver.com, or www.actuarialbookstore.com. Chapter 1 Put-Call Parity and Replication 1.01

More information

Pricing Variance Swaps on Time-Changed Lévy Processes

Pricing Variance Swaps on Time-Changed Lévy Processes Pricing Variance Swaps on Time-Changed Lévy Processes ICBI Global Derivatives Volatility and Correlation Summit April 27, 2009 Peter Carr Bloomberg/ NYU Courant pcarr4@bloomberg.com Joint with Roger Lee

More information

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies George Tauchen Duke University Viktor Todorov Northwestern University 2013 Motivation

More information

MFE/3F Questions Answer Key

MFE/3F Questions Answer Key MFE/3F Questions Download free full solutions from www.actuarialbrew.com, or purchase a hard copy from www.actexmadriver.com, or www.actuarialbookstore.com. Chapter 1 Put-Call Parity and Replication 1.01

More information

Fair Valuation of Insurance Contracts under Lévy Process Specifications Preliminary Version

Fair Valuation of Insurance Contracts under Lévy Process Specifications Preliminary Version Fair Valuation of Insurance Contracts under Lévy Process Specifications Preliminary Version Rüdiger Kiesel, Thomas Liebmann, Stefan Kassberger University of Ulm and LSE June 8, 2005 Abstract The valuation

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Simulating Stochastic Differential Equations

Simulating Stochastic Differential Equations IEOR E4603: Monte-Carlo Simulation c 2017 by Martin Haugh Columbia University Simulating Stochastic Differential Equations In these lecture notes we discuss the simulation of stochastic differential equations

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

Calibration of Ornstein-Uhlenbeck Mean Reverting Process

Calibration of Ornstein-Uhlenbeck Mean Reverting Process Calibration of Ornstein-Uhlenbeck Mean Reverting Process Description The model is used for calibrating an Ornstein-Uhlenbeck (OU) process with mean reverting drift. The process can be considered to be

More information

Hedging with Life and General Insurance Products

Hedging with Life and General Insurance Products Hedging with Life and General Insurance Products June 2016 2 Hedging with Life and General Insurance Products Jungmin Choi Department of Mathematics East Carolina University Abstract In this study, a hybrid

More information

Short-time asymptotics for ATM option prices under tempered stable processes

Short-time asymptotics for ATM option prices under tempered stable processes Short-time asymptotics for ATM option prices under tempered stable processes José E. Figueroa-López 1 1 Department of Statistics Purdue University Probability Seminar Purdue University Oct. 30, 2012 Joint

More information

Valuation of Volatility Derivatives. Jim Gatheral Global Derivatives & Risk Management 2005 Paris May 24, 2005

Valuation of Volatility Derivatives. Jim Gatheral Global Derivatives & Risk Management 2005 Paris May 24, 2005 Valuation of Volatility Derivatives Jim Gatheral Global Derivatives & Risk Management 005 Paris May 4, 005 he opinions expressed in this presentation are those of the author alone, and do not necessarily

More information

Control. Econometric Day Mgr. Jakub Petrásek 1. Supervisor: RSJ Invest a.s.,

Control. Econometric Day Mgr. Jakub Petrásek 1. Supervisor: RSJ Invest a.s., and and Econometric Day 2009 Petrásek 1 2 1 Department of Probability and Mathematical Statistics, Charles University, RSJ Invest a.s., email:petrasek@karlin.mff.cuni.cz 2 Department of Probability and

More information

MODELLING 1-MONTH EURIBOR INTEREST RATE BY USING DIFFERENTIAL EQUATIONS WITH UNCERTAINTY

MODELLING 1-MONTH EURIBOR INTEREST RATE BY USING DIFFERENTIAL EQUATIONS WITH UNCERTAINTY Applied Mathematical and Computational Sciences Volume 7, Issue 3, 015, Pages 37-50 015 Mili Publications MODELLING 1-MONTH EURIBOR INTEREST RATE BY USING DIFFERENTIAL EQUATIONS WITH UNCERTAINTY J. C.

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

Rough volatility models: When population processes become a new tool for trading and risk management

Rough volatility models: When population processes become a new tool for trading and risk management Rough volatility models: When population processes become a new tool for trading and risk management Omar El Euch and Mathieu Rosenbaum École Polytechnique 4 October 2017 Omar El Euch and Mathieu Rosenbaum

More information

The Vasicek Interest Rate Process Part I - The Short Rate

The Vasicek Interest Rate Process Part I - The Short Rate The Vasicek Interest Rate Process Part I - The Short Rate Gary Schurman, MB, CFA February, 2013 The Vasicek interest rate model is a mathematical model that describes the evolution of the short rate of

More information

Unified Credit-Equity Modeling

Unified Credit-Equity Modeling Unified Credit-Equity Modeling Rafael Mendoza-Arriaga Based on joint research with: Vadim Linetsky and Peter Carr The University of Texas at Austin McCombs School of Business (IROM) Recent Advancements

More information

A note on the existence of unique equivalent martingale measures in a Markovian setting

A note on the existence of unique equivalent martingale measures in a Markovian setting Finance Stochast. 1, 251 257 1997 c Springer-Verlag 1997 A note on the existence of unique equivalent martingale measures in a Markovian setting Tina Hviid Rydberg University of Aarhus, Department of Theoretical

More information

Distortion operator of uncertainty claim pricing using weibull distortion operator

Distortion operator of uncertainty claim pricing using weibull distortion operator ISSN: 2455-216X Impact Factor: RJIF 5.12 www.allnationaljournal.com Volume 4; Issue 3; September 2018; Page No. 25-30 Distortion operator of uncertainty claim pricing using weibull distortion operator

More information

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model 1(23) Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility

More information

Basic Stochastic Processes

Basic Stochastic Processes Basic Stochastic Processes Series Editor Jacques Janssen Basic Stochastic Processes Pierre Devolder Jacques Janssen Raimondo Manca First published 015 in Great Britain and the United States by ISTE Ltd

More information

A Simulation Study of Bipower and Thresholded Realized Variations for High-Frequency Data

A Simulation Study of Bipower and Thresholded Realized Variations for High-Frequency Data Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-18-2018 A Simulation Study of Bipower and Thresholded

More information

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013 MSc Financial Engineering 2012-13 CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL To be handed in by monday January 28, 2013 Department EMS, Birkbeck Introduction The assignment consists of Reading

More information

STEX s valuation analysis, version 0.0

STEX s valuation analysis, version 0.0 SMART TOKEN EXCHANGE STEX s valuation analysis, version. Paulo Finardi, Olivia Saa, Serguei Popov November, 7 ABSTRACT In this paper we evaluate an investment consisting of paying an given amount (the

More information

Computational Methods in Finance

Computational Methods in Finance Chapman & Hall/CRC FINANCIAL MATHEMATICS SERIES Computational Methods in Finance AM Hirsa Ltfi) CRC Press VV^ J Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor &

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 5 Haijun Li An Introduction to Stochastic Calculus Week 5 1 / 20 Outline 1 Martingales

More information

Saddlepoint Approximation Methods for Pricing. Financial Options on Discrete Realized Variance

Saddlepoint Approximation Methods for Pricing. Financial Options on Discrete Realized Variance Saddlepoint Approximation Methods for Pricing Financial Options on Discrete Realized Variance Yue Kuen KWOK Department of Mathematics Hong Kong University of Science and Technology Hong Kong * This is

More information

Stochastic volatility modeling in energy markets

Stochastic volatility modeling in energy markets Stochastic volatility modeling in energy markets Fred Espen Benth Centre of Mathematics for Applications (CMA) University of Oslo, Norway Joint work with Linda Vos, CMA Energy Finance Seminar, Essen 18

More information

Practical example of an Economic Scenario Generator

Practical example of an Economic Scenario Generator Practical example of an Economic Scenario Generator Martin Schenk Actuarial & Insurance Solutions SAV 7 March 2014 Agenda Introduction Deterministic vs. stochastic approach Mathematical model Application

More information

Foreign Exchange Derivative Pricing with Stochastic Correlation

Foreign Exchange Derivative Pricing with Stochastic Correlation Journal of Mathematical Finance, 06, 6, 887 899 http://www.scirp.org/journal/jmf ISSN Online: 6 44 ISSN Print: 6 434 Foreign Exchange Derivative Pricing with Stochastic Correlation Topilista Nabirye, Philip

More information

(FRED ESPEN BENTH, JAN KALLSEN, AND THILO MEYER-BRANDIS) UFITIMANA Jacqueline. Lappeenranta University Of Technology.

(FRED ESPEN BENTH, JAN KALLSEN, AND THILO MEYER-BRANDIS) UFITIMANA Jacqueline. Lappeenranta University Of Technology. (FRED ESPEN BENTH, JAN KALLSEN, AND THILO MEYER-BRANDIS) UFITIMANA Jacqueline Lappeenranta University Of Technology. 16,April 2009 OUTLINE Introduction Definitions Aim Electricity price Modelling Approaches

More information

GENERATION OF STANDARD NORMAL RANDOM NUMBERS. Naveen Kumar Boiroju and M. Krishna Reddy

GENERATION OF STANDARD NORMAL RANDOM NUMBERS. Naveen Kumar Boiroju and M. Krishna Reddy GENERATION OF STANDARD NORMAL RANDOM NUMBERS Naveen Kumar Boiroju and M. Krishna Reddy Department of Statistics, Osmania University, Hyderabad- 500 007, INDIA Email: nanibyrozu@gmail.com, reddymk54@gmail.com

More information

Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models

Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models Bilkan Erkmen (joint work with Michael Coulon) Workshop on Stochastic Games, Equilibrium, and Applications

More information

Using Lévy Processes to Model Return Innovations

Using Lévy Processes to Model Return Innovations Using Lévy Processes to Model Return Innovations Liuren Wu Zicklin School of Business, Baruch College Option Pricing Liuren Wu (Baruch) Lévy Processes Option Pricing 1 / 32 Outline 1 Lévy processes 2 Lévy

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE.

We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE. Risk Neutral Pricing Thursday, May 12, 2011 2:03 PM We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE. This is used to construct a

More information

An Introduction to Point Processes. from a. Martingale Point of View

An Introduction to Point Processes. from a. Martingale Point of View An Introduction to Point Processes from a Martingale Point of View Tomas Björk KTH, 211 Preliminary, incomplete, and probably with lots of typos 2 Contents I The Mathematics of Counting Processes 5 1 Counting

More information

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford.

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford. Tangent Lévy Models Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford June 24, 2010 6th World Congress of the Bachelier Finance Society Sergey

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Option Pricing and Calibration with Time-changed Lévy processes

Option Pricing and Calibration with Time-changed Lévy processes Option Pricing and Calibration with Time-changed Lévy processes Yan Wang and Kevin Zhang Warwick Business School 12th Feb. 2013 Objectives 1. How to find a perfect model that captures essential features

More information

Deterministic Income under a Stochastic Interest Rate

Deterministic Income under a Stochastic Interest Rate Deterministic Income under a Stochastic Interest Rate Julia Eisenberg, TU Vienna Scientic Day, 1 Agenda 1 Classical Problem: Maximizing Discounted Dividends in a Brownian Risk Model 2 Maximizing Discounted

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

Likelihood Estimation of Jump-Diffusions

Likelihood Estimation of Jump-Diffusions Likelihood Estimation of Jump-Diffusions Extensions from Diffusions to Jump-Diffusions, Implementation with Automatic Differentiation, and Applications Berent Ånund Strømnes Lunde DEPARTMENT OF MATHEMATICS

More information

Counterparty Credit Risk Simulation

Counterparty Credit Risk Simulation Counterparty Credit Risk Simulation Alex Yang FinPricing http://www.finpricing.com Summary Counterparty Credit Risk Definition Counterparty Credit Risk Measures Monte Carlo Simulation Interest Rate Curve

More information

A Continuity Correction under Jump-Diffusion Models with Applications in Finance

A Continuity Correction under Jump-Diffusion Models with Applications in Finance A Continuity Correction under Jump-Diffusion Models with Applications in Finance Cheng-Der Fuh 1, Sheng-Feng Luo 2 and Ju-Fang Yen 3 1 Institute of Statistical Science, Academia Sinica, and Graduate Institute

More information

Volatility. Roberto Renò. 2 March 2010 / Scuola Normale Superiore. Dipartimento di Economia Politica Università di Siena

Volatility. Roberto Renò. 2 March 2010 / Scuola Normale Superiore. Dipartimento di Economia Politica Università di Siena Dipartimento di Economia Politica Università di Siena 2 March 2010 / Scuola Normale Superiore What is? The definition of volatility may vary wildly around the idea of the standard deviation of price movements

More information

Continuous Processes. Brownian motion Stochastic calculus Ito calculus

Continuous Processes. Brownian motion Stochastic calculus Ito calculus Continuous Processes Brownian motion Stochastic calculus Ito calculus Continuous Processes The binomial models are the building block for our realistic models. Three small-scale principles in continuous

More information

Valuation of European Call Option via Inverse Fourier Transform

Valuation of European Call Option via Inverse Fourier Transform ISSN 2255-9094 (online) ISSN 2255-9086 (print) December 2017, vol. 20, pp. 91 96 doi: 10.1515/itms-2017-0016 https://www.degruyter.com/view/j/itms Valuation of European Call Option via Inverse Fourier

More information

Dr. Maddah ENMG 625 Financial Eng g II 10/16/06

Dr. Maddah ENMG 625 Financial Eng g II 10/16/06 Dr. Maddah ENMG 65 Financial Eng g II 10/16/06 Chapter 11 Models of Asset Dynamics () Random Walk A random process, z, is an additive process defined over times t 0, t 1,, t k, t k+1,, such that z( t )

More information

Applied Stochastic Processes and Control for Jump-Diffusions

Applied Stochastic Processes and Control for Jump-Diffusions Applied Stochastic Processes and Control for Jump-Diffusions Modeling, Analysis, and Computation Floyd B. Hanson University of Illinois at Chicago Chicago, Illinois siam.. Society for Industrial and Applied

More information

3.1 Itô s Lemma for Continuous Stochastic Variables

3.1 Itô s Lemma for Continuous Stochastic Variables Lecture 3 Log Normal Distribution 3.1 Itô s Lemma for Continuous Stochastic Variables Mathematical Finance is about pricing (or valuing) financial contracts, and in particular those contracts which depend

More information

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University Optimal Hedging of Variance Derivatives John Crosby Centre for Economic and Financial Studies, Department of Economics, Glasgow University Presentation at Baruch College, in New York, 16th November 2010

More information

Conditional Full Support and No Arbitrage

Conditional Full Support and No Arbitrage Gen. Math. Notes, Vol. 32, No. 2, February 216, pp.54-64 ISSN 2219-7184; Copyright c ICSRS Publication, 216 www.i-csrs.org Available free online at http://www.geman.in Conditional Full Support and No Arbitrage

More information

The value of foresight

The value of foresight Philip Ernst Department of Statistics, Rice University Support from NSF-DMS-1811936 (co-pi F. Viens) and ONR-N00014-18-1-2192 gratefully acknowledged. IMA Financial and Economic Applications June 11, 2018

More information

Advanced. of Time. of Measure. Aarhus University, Denmark. Albert Shiryaev. Stek/ov Mathematical Institute and Moscow State University, Russia

Advanced. of Time. of Measure. Aarhus University, Denmark. Albert Shiryaev. Stek/ov Mathematical Institute and Moscow State University, Russia SHANGHAI TAIPEI Advanced Series on Statistical Science & Applied Probability Vol. I 3 Change and Change of Time of Measure Ole E. Barndorff-Nielsen Aarhus University, Denmark Albert Shiryaev Stek/ov Mathematical

More information